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Abstract

Ship-borne observations of spectral aerosol optical depth (AOD) have been carried out
over the entire Bay of Bengal (BoB) as part of the W-ICARB cruise campaign during
the period 27 December 2008–30 January 2009. The results reveal a pronounced
temporal and spatial variability in the optical characteristics of aerosols mainly due to5

anthropogenic emissions and their dispersion controlled by local meteorology. The
highest aerosol amount, with mean AOD500 over 0.4, being even above 1.0 on specific
days, is found close to the coastal regions in the western and northern parts of BoB. In
these regions the Ångström exponent is also found to be high (∼1.2–1.25) indicating
transport of strong anthropogenic emissions from continental regions. A very high10

AOD500 (0.39±0.07) and α380–870 values (1.27 ± 0.09) are found for the first time over
the Eastern BoB, which was unexplored in the earlier ICARB-06 campaign. Except
from the large α380–870 values, an indication of strong fine-mode dominance is also
observed from the AOD curvature, which is negative in the vast majority of the cases,
suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand,15

clean maritime conditions are rather rare over the region, while the aerosol types are
further examined through a classification scheme using the relationship between α and
dα. It was found that even for the same α values the fine-mode dominance is larger for
higher AODs showing the strong continental influence over the marine environment of
BoB. Furthermore, there is also an evidence of aerosol size growth under more turbid20

conditions indicative of coagulation and/or humidification over specific BoB regions.
The results obtained using OPAC model show significant fraction of soot aerosols (∼6–
8%) over the Eastern and Northwestern BoB, while coarse-mode sea salt particles are
found to dominate in the southern parts of BoB.
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1 Introduction

In the last decades aerosols have been recognized as a major source in determining
global climatic change, since they play an important role in solar and thermal radiative
transfer in the atmosphere (e.g., Wild, 2009). Through their direct and indirect effects
aerosols strongly modify the radiation budget at the Earth’s surface as well as the cloud5

microphysical properties, precipitation rate and hydrological cycle (e.g., Ramanathan
et al., 2001a). The climatic effect of aerosols is closely related to their optical proper-
ties, surface albedo and their relative position in respect to that of clouds (e.g., Koch
and Del Genio, 2010) and, as a consequence, the climate response to the different
aerosol types varies significantly from negative (cooling) to positive (heating) still having10

large uncertainties (e.g., Satheesh and Krishna Moorthy, 2005 and references therein).
These uncertainties can be reduced by acquiring more data, either through long-term
global observation networks over land (e.g. AERONET), intensive field campaigns or
from satellite monitoring. Because of the aerosol sources and emission characteris-
tics, atmospheric lifetimes and dynamic processes in the atmosphere, their physical15

and chemical characteristics are highly inhomogeneous in space and time even over
oceanic areas (e.g., Smirnov et al., 2009). The aerosol optical and physico-chemical
properties at a given location depend on the source region of aerosol formation and
are modified by local and regional meteorology besides mixing with other particles of
non-local origin (Madhavan et al., 2008). The aerosol load and size distribution are vital20

to understand the main aerosol types, their source strength and climate implications
(e.g., Kaskaoutis et al., 2007a), while the use of fixed aerosol models in association
with measurements plays a crucial role in aerosol type identification (e.g., Chin et al.,
2009; Satheesh et al., 2010).

The aerosol-climate coupling and its global impact have attracted the attention of25

scientists mainly on densely populated and climatically sensitive areas, such as South
Asia (e.g., Lawrence and Lelieveld, 2010 and references therein). Earlier studies (e.g.,
Menon et al., 2002; Lau et al., 2006; Gautam et al., 2009a) have revealed elevated
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absorbing aerosol layers, especially over the Indo-Gangetic plains (IGP), which con-
tribute to the warming of troposphere as observed by Gautam et al. (2010). The warm-
ing of the troposphere may have direct or indirect impact on the early onset and shifting
of the monsoon. During winter season (December to February; also called dry sea-
son), the mean wind pattern around Indian sub-continent is north-westerly and the5

continental aerosols transported over the nearby oceanic regions are of various ori-
gins and chemical compositions (e.g., George and Nair, 2008; Kumar et al., 2010),
also presenting quite variable optical properties in spatial and temporal domains (e.g.,
Moorthy et al., 2010). They can be originated from both natural (sea-salt production,
dust storms) and anthropogenic sources (fossil-fuel combustion, biomass burning) re-10

maining in the marine atmosphere for few days to few weeks until they are deposited
into the ocean by gravitational settling or rain washout (Dey and di Girolamo, 2010).

Recent cruise campaigns (e.g., Indian Ocean Experiment, INDOEX; Arabian Sea
Monsoon Experiment, ARMEX; Integration Campaign for Aerosols, gases and Radia-
tion Budget, ICARB) focused on region-specific characterization of the aerosol proper-15

ties in oceanic regions surrounding India. Results from these campaigns have shown
that large amounts of wind-blown dust particles and other anthropogenically produced
aerosols get transported from the Asian landmass over the oceanic regions in thou-
sands of kilometers away from their sources (Ramanathan et al., 2001b; Ganguly et al.,
2005; Moorthy et al., 2005, 2008). INDOEX aimed to study the advection of conti-20

nental aerosols from adjacent landmass over to Indian Ocean, their radiative effects
and the role of the Inter-Tropical Convergence Zone (ITCZ) in the aerosol transport.
While INDOEX addressed these issues and focused on a north-south transect over
the Arabian Sea (AS), the northern and western parts of AS as well as the entire BoB
remained unexplored. ICARB campaign was carried over the BoB, AS and Northern25

Indian Ocean (NIO) during the pre-monsoon season of 2006 to shed light in the spa-
tial and temporal characteristics and dynamics of aerosols emitted from the continent;
however, the far Eastern BoB, east of Andaman and Nicobar islands remained unex-
plored. To investigate the aerosol field in more detail the winter ICARB (W-ICARB)
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was scheduled from the Indian Space Research Organization Geosphere Biosphere
Program (ISRO-GBP) to be conducted over BoB. Although BoB has been extensively
studied by several researchers during the earlier ICARB campaign (special issue in
J. Earth System Science), the achievements of W-ICARB are: i) this campaign was
performed during a different season (December/January) when the synoptic winds are5

of continental origin, ii) none of the earlier cruises covered the eastern part of BoB (be-
yond ∼93◦ E), iii) the interesting observations of high AOD and α values in East BoB
are brought out for the first time during W-ICARB although such evidences have been
observed by Dey and Singh (2002) using IRS P4 OCM data.

The present study focuses on the AOD and Ångström exponent spectral variation10

and curvature, which can constitute the basis for the aerosol-type classification. Al-
though earlier studies (e.g., Kalapureddy and Devara, 2008) presented some results
of the spectral AOD curvature this is the very first that discriminates the main aerosol
types over BoB during winter season and the results are compared with those found
over BoB and AS during pre-monsoon aiming at determining the aerosol seasonality.15

Furthermore, the use of a classification scheme based on the relation between α and
dα is applied for the first time over BoB showing promising results about the aerosol
modification processes. The use of OPAC model and the simulation of the main aerosol
properties over entire BoB is another unique topic of the present work.

2 Study region and campaign details20

BoB has a unique weather pattern in terms of the Indian monsoon and the associated
winds show seasonal reversal; being surrounded by densely populated and industrial-
ized regions at its north, west and east, provides an excellent environment for the in-
vestigation of natural marine aerosols as well as their interaction with continental ones
(e.g., Moorthy et al., 2008), since pristine air masses from Southern Indian Ocean and25

polluted air from Indian sub-continent meet. The prevailing meteorological conditions
during W-ICARB consist of generally clear skies with north-westerly winds in West and
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North BoB, while easterly winds of higher intensity were observed over east and parts
of South BoB (Raghavendra Kumar et al., 2011; Sinha et al., 2011). W-ICARB was
conducted from 27 December 2008 to 30 January 2009 over entire BoB focusing on
the physical and optical properties of atmospheric aerosols, trace gases and aerosol
chemistry over the region. The cruise track during the campaign is shown in Fig. 1. The5

arrowheads denote the direction of the ship movement, while the red circles show the
mean position of the ship at 10:30 LT on each day. The oceanic research vessel (ORV)
Sagar Kanya started from Chennai port (13.1◦ N, 80.2◦ E), a metro city in the south-
eastern coast of India on 27 December 2008, and during its return journey, passed
Sri Lanka on 28 January 2009 and returned back to Kochi (9.6◦ N, 76.1◦ E) at AS on10

30 January 2009. The intense field phase covered the longitudinal sector 80◦ E–97◦ E
with a latitudinal coverage from 3◦ N to 20◦ N. The particular configuration of the cruise
track enabled measurements on the coastal waters and oceanic regions in rapid suc-
cession (Moorthy et al., 2010). This provided a nearly homogeneous spatially gridded
aerosol database within a time span of about a month, during which the aerosol char-15

acteristics are considered to be statistically invariant. This was also corroborated by
the prevailing meteorology, which was devoid of any major synoptic weather systems,
such as cyclones, depressions or extensive cloud cover during the measuring period.

3 Ship-borne measurements and methodology

High temporal resolution (∼10 min) observations of direct-beam solar radiation were20

made using two (sun-photometer and ozonometer) handheld MICROTOPS-II, (MT)
(Solar Light Company, USA). One provided AOD at 5 channels (380, 440, 500, 675
and 870 nm), while the other AOD at 1020 nm, columnar water vapor (CWV) and col-
umn ozone, using three UV and two IR bands, with one of them at 1020 nm. The Full
Width at Half Maximum (FWHM) bandwidth for 380-nm channel is 2.4±0.4 nm and25

10±1.5 for other channels. The accuracy of the sun-targeting angle is better than
0.1◦, while the field of view (FOV) 2.5◦. The sun-photometer provides optical depths
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by knowing the respective radiation intensities at top-of-atmosphere (TOA), using its
internal calibration. The errors in the AOD estimations were found to be well below, or
equivalent, to ±0.03 (Morys et al., 2001), with larger values in the UV. As discussed by
Kaskaoutis et al. (2010), we followed the method outlined by Cachorro et al. (2004) for
correction of AOD at each wavelength in order to eliminate the diurnal artifact of AOD.5

Shaw (1980) reported anomalous absorption at 1010 nm, possibly from water vapor,
since the extinction at this wavelength increases with increasing CWV. The water-vapor
absorption also affects the 1020-nm channel increasing the measured AOD. Despite
that, there is another possible uncertainty associated with the 1020-nm channel due
to the temperature-sensitivity of the silicon detector, which is insignificant at the other10

wavelengths. For these reasons, the 1020-nm channel was excluded from the anal-
ysis. The MT was factory calibrated at regular intervals, while the details about its
design, calibration, and performance have been described elsewhere (Morys et al.,
2001; Porter et al., 2001; Ichoku et al., 2002). Triplet observations with the MT were
made at every 10 min to avoid any possible manual error in sun pointing on the mov-15

ing platform (see also Kaskaoutis et al., 2010). To further eliminate such errors the
instrument was operated by the same observer throughout the cruise period. Further-
more, data recorded around cloud passage or near the FOV of the instrument were
not considered for analysis. A Global Positioning System (GPS) receiver attached to
the sun-photometer provided information about time, location and altitude. Intense care20

has been taken to avoid contamination from the unfavorable smoke and other exhausts
from the chimney of the ship. Due to cloud formations on some of the cruise days, the
number of avaialable spectra varied widely, from 3 (on 18 and 22 January) to above 50
(on 1, 3, 4, 8, 9 and 17 January). Also, some days (13, 28–30 January) were absolutely
overcast obscuring the sun-photometer measurements. From the available dataset, we25

also removed those spectra, which resulted to large typical errors when fitting a 2nd
order polynomial to the log-log plot of the spectral AOD (Eq. 1), setting a threshold in
R2 value of 0.92.
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The Ångström formula has been fitted in spectral AODs in order to obtain the wave-
length exponent (α) and the turbidity coefficient (β) using the least-squares method in
the lnAOD vs. lnλ plot in the spectral band 380–870 nm. Furthermore, the curvature of
the lnAOD vs. lnλ was used to have some insight on the aerosol-size distribution (Eck
et al., 1999; Schuster et al., 2006; Kaskaoutis et al., 2007b) as well as to aerosol mod-5

ification processes (e.g coagulation, humidification) (Gobbi et al., 2007; Basart et al.,
2009). The curvature is characterized by the coefficient a2 (Eq. 1), which can be uti-
lized in conjunction with AOD and α for the discrimination of different aerosol types; it
also constitutes an indicator for the relative influence of fine- vs. coarse-mode particles
in the aerosol size distribution (Shuster et al., 2006):10

lnAODλ =a2(lnλ)2+a1 lnλ+a0 (1)

In the present analysis, Eq. (1) was applied to the AOD values at 5 wavelengths (380,
440, 500, 675 and 870 nm).

4 Results

4.1 Temporal variation of the aerosol optical properties15

Figure 2 shows the temporal variation of AOD500 (a) and α380–870 (b) over BoB during
W-ICARB dividing the whole set of measurements into four BoB sub-regions, i.e. west,
north, south-central and east (see Fig. 1). High AOD is observed near the coasts (27–
28 December, 1–2 and 7 January) and it was found to decrease when the ship moves
away from the shore with lower values over pristine ocean (4–5 and 19–20 January).20

Similar characteristics were also observed by Dey and Singh (2002). The large day-
to-day variability could be due to aerosol emissions from the Indian sub-continent and
to the prevailing meteorological conditions (wind speed and direction, air temperature
and relative humidity – RH). The high AOD500 values close to the coast arise mainly
from the anthropogenic activities along the coastal regions, which are highly urbanized25
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and industrialized. As the anthropogenic aerosols are generally in the sub-micron size
and hence have longer residence times, they get transported to greater distances over
the ocean before they settle down under gravity. Extremely large AOD500 values (>1.2)
were found in the morning hours of 2 January when the ship was cruising in the north-
ern most region of BoB. Special care has been taken in order to secure that these data5

were not cloud contaminated. This is justified by the high α values and the accuracy of
the polynomial fit (Eq. 1). A secondary peak in AOD500 is observed on 7 January when
the ORV approaches again the northern coast of BoB (Fig. 2a). The mean AOD500 in
the western part of BoB is found to be 0.45±0.12, which is comparable to that found
in the same region (AOD=0.41±0.14) during a short cruise in February 2003 (Vi-10

noj et al., 2004); a similar AOD500 (0.47) over this area is also reported by Moorthy
et al. (2010). The AOD500 in West and North BoB is comparable in magnitude with that
found during winter season over Hyderabad (Kaskaoutis et al., 2009) and over 4 urban
Indian cities (Ramachandran, 2007) indicating strong influence of these regions from
the coastal urban centers. The mean AOD500 over South-Central BoB is found to be15

lower than that of the other sub-regions and comparable to that (0.26±0.10) observed
over Southern BoB and NIO during ICARB-06 (Kalapureddy and Devara, 2008). East
BoB shows a narrow AOD500 distribution, since ∼84% of the values lie in the range
0.3–0.5. Such a high AOD500 value (0.39±0.07) over far East BoB is found for the first
time, since this region was remained unexplored during the former ICARB campaign.20

However, similar AODs were found over Port Blair associated with air masses from
Southeast Asia (Moorthy et al., 2003). The mean AOD500 over entire BoB was found to
be 0.39±0.20, which is comparable to that (0.36±0.12) during ICARB-06 and much
higher than that found over AS during several previous cruises (e.g., Ramanathan et al.,
2001b; Moorthy et al., 2005; Kalapureddy and Devara, 2008).25

The time series of α shows large day-to-day variability with a sharp gap on 4 Jan-
uary when the ship was cruising Central BoB. These low α values are found to be
associated with coarse sea-salt aerosols over the area (note also the low AODs in this
period, which do not support dust transport). Large scatter and diurnal variation in α
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values is observed in South-Central BoB associated with the lowest AOD500, which
was also observed by Rajeev et al. (2000) and Dey and Singh (2002) using satellite
data. The anthropogenic aerosols from fossil-fuel and bio-fuel combustion contribute to
fine particles in winter, thus α >1 in the vast majority of the cases. During this season
the marine boundary layer is found to be shallow and traps pollutants in a smaller vol-5

ume leading to large fine-mode fraction near the surface (Raghavendra Kumar et al.,
2011). The lower temperatures along with the trapping of pollutants favor the forma-
tion of hazy and foggy conditions over IGP (Ganguly et al., 2006; Das et al., 2008;
Badarinath et al., 2009a) that influence the head BoB during favorable wind condi-
tions. Thus, large amount of fine-mode aerosols and Black Carbon (BC) over BoB10

was found to be associated with air masses originating from IGP (Nair et al., 2009).
The mean α over entire BoB is 1.14±0.23, which is in close agreement with the val-
ues (1.21±0.11, 1.1±0.1) found over BoB in pre-monsoon (Kalapureddy and Devara,
2008) and winter (Vinoj et al., 2004), respectively. The largest mean α is observed
over East BoB indicating that this region is strongly affected by fine-mode aerosols15

coming from South-Eastern Asia; Moorthy et al. (2010) reported even larger α values
(1.3–1.36) in West, North and East BoB. Unlike the other marine regions where sea-
salt aerosols contribute most to the total aerosol mass concentration (e.g., Smirnov
et al., 2009), the aerosol chemical composition analysis performed over Indian Ocean
and Kaashidhoo during INDOEX 1999 found that sea salt contributes only 11 and 17%20

to the total aerosol loading, respectively, while anthropogenic aerosols contribute the
most (Ramanathan et al., 2001b; Satheesh et al., 2002). The chemical analysis during
W-ICARB shows a large fraction of anthropogenic nss-SO2−

4 , organic matter and BC in
the aerosol-mass concentrations (Kumar et al., 2010). This fact partly explains the high
α values over BoB. The spatial distribution of AOD and α over BoB during W-ICARB25

are presented elsewhere (Moorthy et al., 2010; Raghavendra Kumar et al., 2011).
Figure 3 shows the temporal variation of the a2 values (a) and the associated er-

rors (b) from the 2nd order polynomial fit. Larger negative values of a2 correspond
to a relative influence of fine-mode vs coarse-mode aerosols (Eck et al., 1999), while
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values near to zero correspond to aerosol-size distribution with similar contribution of
fine and coarse modes (Eck et al., 2005). In contrast, positive a2 values suggest dom-
inance of natural coarse-mode aerosols. During W-ICARB, the curvature (a2) shows
mostly negative values indicating significant contribution of fine-mode aerosols over
entire BoB with exception of some parts (mainly in south-central and secondarily in5

north). The aerosol properties in the open oceanic regions are influenced by in-situ
production of sea spray, which depends on wind speed (e.g., Satheesh et al., 2006),
while those near coasts are influenced by the continental outflow. The a2 values ex-
hibit a similar range (∼−0.8 to 0.8) to that found over AS (Kaskaoutis et al., 2010) but
with larger fraction of negative values, as also observed over BoB during pre-monsoon10

season (Kalapureddy and Devara, 2010). The percentages for a2 >0 are 1.5%, 27.7%,
36.5% and 5.7% for West, North, South-Central and East BoB, respectively. The larger
presence of coarse-mode aerosols in South-Central BoB is associated with enhanced
values of RH and stronger winds (Moorthy et al., 2010). Larger errors in a2 are found
over regions with low AOD500 (parts of Central-South and Northeastern BoB). On the15

other hand, low errors are found over West, North and East BoB, closely associated
with high AODs, similarly to the results obtained over AS (Kaskaoutis et al., 2010).

According to Schuster et al. (2006), α is equal to the difference a2 −a1 to a first
approximation. The correlations between α380–870 and a2 −a1 (in the same spectral
band) are shown in Fig. 4. The two parameters are strongly correlated, as indicated20

by the high R2 values in all BoB sub-regions; this supports the validity of the retrievals.
The few scattered points, especially in North BoB, correspond to cases where the 2nd
order polynomial fit does not provide high accuracy (R2 < 0.94). It is to mention here
that special care has been taken in the present work on AOD validation (e.g. application
of the Cachorro et al. (2004) method) to improve the above correlations significantly25

and make the dataset valid for such analysis.

7862

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 7851–7907, 2011

Large anthropogenic
aerosol loading over

BoB

D. G. Kaskaoutis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Classification of aerosol types via sun-photometer measurements

The characterization of aerosol types requires information on several optical and phys-
ical properties that depend strongly on wavelength (e.g., Dubovik et al., 2002). The
combined use of properties corresponding to aerosol load (e.g. AOD) and aerosol size
(e.g., Angstrom exponent, effective radius, fine-mode fraction) is the most common and5

widely used technique for the discrimination between different aerosol types (e.g., Pace
et al., 2006; Kaskaoutis et al., 2007a; El-Metwally et al., 2008; Carmona and Alpert,
2009; Kalapureddy et al., 2009). Thus, scatter plots of AOD vs. α can be obtained in
order to discriminate different aerosol types through determination of physically inter-
pretable cluster regions.10

Figure 5 shows the scatter plot (left panel) and the density plot (right panel) of
AOD500 vs. α380–870 over the entire BoB. The density plot was constructed using 0.1
step for both AOD500 and α380–870 values. There is a wide range of α380–870 values for
low-to-moderate AOD500 (<0.4) suggesting strong variability in the aerosol properties,
where any aerosol type is difficult to be defined. The increasing values of α380–87015

with increasing AOD500 in West BoB indicate significant contribution of fine particles
in the atmospheric column, especially under high turbidity. Similar feature has been
observed elsewhere for a variety of fine-mode aerosols (e.g., Porter and Clarke, 1997;
Remer et al., 1998; Reid et al., 1999). The scatter plot over Northern BoB shows large
similarities with that observed over Alta Floresta, Brazil, while the scatter plot over East20

BoB with that over Ispra (Kaskaoutis et al., 2007a). There is an evidence of reduction of
α380–870 as AOD increases over East BoB; this reflects the transition of fine-mode parti-
cles to accumulation-mode through coagulation, condensation and gas-to-particle con-
version. A similar trend of decreasing values of α as AOD increases was observed over
East Asia (Ogunjobi et al., 2004), AS (Kalapureddy et al., 2009) and other locations for25

various aerosol types (e.g., Eck et al., 1999, 2001; Pace et al., 2006). It is interesting to
note that, except from South-Central BoB where a large range of AOD500 vs. α380–870
exists, the other regions present similar AOD500, α380–870 pairs of maximum density.
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Viewing the density plot (right panel) a clear-defined area of larger density is revealed
for the (AOD500, α380–870) pair of (∼0.4, 1.2). This indicates that the aerosols over BoB
during winter season are, in the vast majority of the cases, of anthropogenic origin with
a large fine-mode fraction under turbid atmospheres. Other secondary large-density ar-
eas are those of (AOD500, α380–870)= (∼0.2, 1.4) corresponding to fine-mode aerosols5

for relative clean atmospheres and some hints of α380–870 < 0.8 for AOD500 = 0.4–0.5,
indicative of coarse-mode particles under turbid conditions. The density plot over BoB
in winter season is far away from that observed over AS during pre-monsoon (Kala-
pureddy et al., 2009) where four clearly defined maximum density regions were found,
each corresponding to different aerosol type. On the other hand, the density plot over10

BoB is similar to that observed over urban Hyderabad during winter (Kaskaoutis et al.,
2009), where the dominant aerosol type was defined from the (AOD500, α380–870) pair
of (∼0.4–0.5, 1.2). This indicates the strong influence of the anthropogenic emissions,
which were found to have a spatial offshore extent of ∼400 km over BoB (Moorthy
et al., 2008).15

For the classification of aerosols into specific types some “appropriate” thresh-
old values are required. For a direct comparison with the previous study over AS
(Kalapureddy et al., 2009) the threshold values remained the same. Thus, i) val-
ues of AOD500 < 0.15 with α380–870 < 1.3 represent Background Maritime (BM) condi-
tions, ii) AOD500 > 0.2 and α380–870 > 1.0 can characterize transported Anthropogenic20

Pollution and/or biomass-burning aerosols (AP), iii) AOD500 > 0.25 associated with
α380–870 < 0.7 are indicative of coarse-mode particles (sea salt, suspended dust) un-
der turbid atmospheres (HCM), iv) the remaining cases not belonging to any of the
above groups are characterized as mixed-undetermined aerosols (MU). According to
the analysis the number for each aerosol type over entire BoB is AP: 689 (70%), BM: 2525

(2.5%), HCM: 55 (5.6%) and MU: 217 (22%).
Figure 6 shows the percent contribution of the four aerosol types to the BoB sub-

regions. The AP type is the most dominant with varying magnitudes ranging from
33 to 99%. These fractions are much larger than those found over AS (Kalapureddy

7864

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 7851–7907, 2011

Large anthropogenic
aerosol loading over

BoB

D. G. Kaskaoutis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

et al., 2009) and Hyderabad (Kaskaoutis et al., 2009) rendering BoB to be a strong
anthropogenically-polluted region. The presence of HCM type (18.9%) is limited over
South-Central BoB with an almost absence over the other regions. A pronounced dif-
ference between AS and BoB is the extremely large occurrence of AP type over East
BoB (99%), whereas in far AS its presence was limited. This is attributed to the dif-5

ferent land use in the adjoining coasts. The Eastern BoB is influenced by the densely
populated Southeast Asia with large urban and biomass-burning emissions in the dry
period of the year, while far AS is close to arid Arabian Peninsula and the effect of an-
thropogenic pollution is limited. The most exciting finding of the present analysis is the
relatively low fraction of MU, which was the dominant type in all of the above-mentioned10

studies. The large impact of the anthropogenic sources is further verified via chemical
analysis that shows a widespread depletion of chloride in PM10, from 40 to 100%, com-
pared to Cl−/Na+ ratio in sea salt (Kumar et al., 2010). Furthermore, the carbonaceous
aerosols (organic and elemental carbon) contribute ∼27% to PM2.5, while their sig-
nificant linear regression with K+ suggests biomass burning as their dominant source15

(bio-fuels, fossil fuels and agricultural waste). The enhancement in the fractional sol-
ubility of aerosol Fe, as assessed in PM2.5, re-emphasizes the impact of combustion
sources and biomass burning, while the enrichment factors of heavy metals (Pb and
Cd), exceeding 200–400, further demonstrate the influence of pollution over BoB (Ku-
mar et al., 2010). Similarly, the anthropogenic contribution to the 5-year (1996–2000)20

mean AOD over coastal AS was found to be above 90% and it was 74% over tropi-
cal Indian Ocean during the northeast monsoon season (Ramachandran, 2004). Ra-
manathan et al. (2001b) found that over NIO the human-produced contribution to the
AOD500 was about 80±10%. Satheesh et al. (1999) estimated that during INDOEX
1998 the anthropogenic aerosols contributed about 65% to AOD500, while their con-25

tribution during INDOEX 1999 was more than 70% (Satheesh et al., 2002). All the
above findings verify the large anthropogenic contribution, in excess of 70% accord-
ing to the present analysis, over BoB regions downwind of the Indian subcontinent
and Southeast Asia since the anthropogenically produced submicron aerosols can be
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transported over long distances (e.g., Nair et al., 2010).
The contribution of the different aerosol types can be strongly modified exhibiting

latitudinal and longitudinal variability of AOD and α (Kedia and Ramachandran, 2008).
Figure 7 shows the latitudinal variation of the contribution (%) of the four aerosol types.
The results show that except for a few latitudinal belts the aerosol field over BoB dur-5

ing winter season is characterized by anthropogenic aerosols with the co-existence of
mixed aerosols with fraction of 30±10% for the most latitudinal belts. In general, BM
conditions are observed for <4◦ N with some hints in Central BoB (14–16◦ N), while
coarse-mode aerosols for <7◦ N (Southernmost BoB and NIO). In the northern lati-
tudes the AP type clearly dominates as well as for the latitudinal belt 9–12◦ N that cor-10

responds to observations in East BoB. The Southern BoB is the most heterogeneous
area regarding the aerosol type; as the latitude increases the aerosol field is composed
nearly exclusively of AP aerosols. The respective graph (not shown) regarding the lon-
gitudinal variation did not show such clear findings, except of the larger fraction of AP
for eastern longitudes.15

Figure 8 shows the correlation of the coefficient a2 against AOD500 (a, c) and
α380–870 (b, d) for the four BoB sub-regions and the four aerosol types. The curvature
can be utilized in conjunction with AOD and α for the discrimination of different aerosol
types and enhance the knowledge about the volume fraction and effective radius of the
fine-mode aerosols at intermediate values of α (Schuster et al., 2006). The data lying20

on or near the a2 = 0 line correspond to the Junge power law size distribution (without
curvature) and occur for a wide range of AOD500 (0.2–0.6) and α380–870 (0.2–1.4). For
low AOD500 there is a wide variability in a2 (both positive and negative), while for larger
AODs a2 becomes negative. The AOD500 vs. a2 plot over BoB is very different than that
found over AS (Kalapureddy et al., 2009). The main differences can be detected at the25

most negative a2 values for high AOD500 over BoB, while a2 approaches zero for high
AOD500 over AS. The former is indicative of enhanced presence of fine-mode aerosols
in turbid atmospheres, while the latter of a bimodal aerosol-size distribution where the
coarse-mode has a significant fraction (e.g., Eck et al., 1999). The AP type exhibits
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mostly negative a2 values, while for the BM and HCM types a2 is mostly positive. Note
also that the data obtained over Northeast BoB (AOD500 < 0.2) are of MU type. For
a specific value of α380–870, a large spread of a2 values occurs even belonging to the
same aerosol type. This is in agreement with the findings of Schuster et al. (2006); they
have shown varying size distributions with the same α giving large differences in cur-5

vature and found that the curvature alone is not so capable for describing the aerosol
particle size. However, it is possible to classify the aerosol types by plotting α380–870
vs. a2. The scatter plots of α380–870 vs. a2 over BoB and AS have some similarities in
the scatter of the data points with sufficiently larger fraction of positive a2 over the AS
(Kalapureddy et al., 2009).10

During pre-monsoon ICARB-06 Kalapureddy and Devara (2010) found coarse-mode
dominance over BoB, NIO and AS, with BoB to exhibit larger fine-mode fraction. The
presence of large amount of fine-mode aerosols over BoB during winter season can be
attributed to several reasons: (i) in this season the anthropogenic emissions (fossil-fuel
combustion, BC emissions) are found to be large over India (Ramachandran and Ra-15

jesh, 2007; Pathak et al., 2010) and more specifically over IGP (Singh et al., 2004), the
region which is the most responsible for the aerosol outflow over BoB (e.g., Dey and
di Girolamo, 2010;), (ii) the mineral and/or desert dust is more frequent over the re-
gion during pre-monsoon (e.g., Prospero et al., 2002; Gautam et al., 2009b), (iii) in
West and North BoB there is a remarkable influence from elevated aerosol layers20

composed of coarse-mode particles during pre-monsoon (Nair et al., 2009), (iv) the
coarse-mode aerosols have longer lifetime during pre-monsoon due to more stable
atmospheric conditions, (v) Eastern BoB, which is strongly influenced by fine-mode
aerosols, was unexplored during ICARB-06 campaign. As a consequence, the aerosol
optical properties demonstrate a significant spatial and temporal variability depending25

on the complex combination of natural and anthropogenic aerosol formation factors, in-
cluding fuel types and emission characteristics, long-range transport, deposition rates,
coating and evolution.
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Table 1 summarizes the aerosol optical properties obtained over BoB sub-regions
for the four aerosol types. In general, AOD500 is found to be larger for the AP type,
with exception of the MU type over West BoB. This feature is also reversed over South-
Central BoB where HCM presents larger AOD500 and lower α380–870. It was found
that for AOD500 > 0.7 AP is the only type that differentiates BoB from other marine5

locations, i.e. Lampedusa, Nauru (Pace et al., 2006; Kaskaoutis et al., 2007a). A strik-
ing feature is the large α380–870 values for the BM type over North BoB; these data
correspond to Northeast BoB, where the low AOD, the large α and the dominance
of fine-mode aerosols can be explained by air-mass trajectories and vertical aerosol
distribution (Moorthy et al., 2010). A similar feature was found in the open AS with α10

values to be large (>1.0) in the majority of the cases (Kalapureddy et al., 2009). Thus,
the anthropogenic influence over these marine regions can be significant even for large
distances from the Indian coast, as has been shown in the Southern BoB region (Nair
et al., 2010). The a2 values can differentiate between coarse-mode (HCM and BM)
and fine-mode (AP, MU) aerosols having positive and negative values, respectively.15

4.3 Aerosol modification processes

It is well known (e.g., Kaskaoutis and Kambezidis, 2008) that α depends strongly on
the spectral bands used for its determination. Hence, the information contained in the
AOD500 vs. α380–870 scatterplot (Fig. 5) becomes more difficult to interpret, while the
spectral information given by the determination of α in different spectral bands helps20

us for classification of the aerosol types and examining aerosol modification. Gobbi
et al. (2007) proposed a simple graphical method to visually convert (α, dα) to the
contribution of fine aerosols to the AOD and the size of the fine particles. This classifi-
cation scheme is based on Mie calculations (using air refractive index m= 1.4–0.001i)
correlating the α vs. dα plot with the fine-mode fraction at 675 nm (η) and effective25

radius of fine aerosols (Rf) and is appropriate for identifying aerosol-modification pro-
cesses, i.e. cloud contamination, hydration, and coagulation-aging. This scheme is per-
formed over entire BoB (Fig. 9) and its four sub-regions (Fig. 10), while recently it has
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been applied over AS during ICARB-06 (Kaskaoutis et al., 2010). Gobbi et al. (2007)
used only cases of AOD>0.15 from AERONET to avoid errors larger than ∼30%.
In the present analysis the whole set of observations was used since the fraction of
AOD500 <0.15 is very low (2.5%). The Ångström exponent difference (dα) was defined
as dα = α(440–675)−α(675–870). In Figs. 9 and 10 the aerosols are classified by5

representing their AOD500 by different colors.
Negative dα indicates the dominance of fine-mode aerosols, while near zero or pos-

itive values correspond to aerosol-size distribution of two separate modes with the
coarse one to have a large fraction. Regarding the entire BoB, an increase in AOD
shows a shift to larger α values (1.1–1.4) with Rf between 0.15–0.20 µm. The scheme10

indicates that the aerosols are of bimodal distribution having a large fine-mode fraction
(η>60%) being 80–90% for larger AODs. High aerosol extinctions over the BoB are
linked to hygroscopic and/or coagulation growth from aging of the fine-mode aerosols
leading to larger Rf (0.15–0.2 µm) and larger η (80–90%) values. Fine-mode fraction
below 50% occurs for moderate-to-low AODs over relative clean marine regions. Ear-15

lier studies over AS during pre-monsoon (Kalapureddy et al., 2009; Kalapureddy and
Devara, 2010; Kaskaoutis et al., 2010) have shown a rather opposite feature, since for
low AODs the fine-mode aerosols dominated; a complicated mixture of both anthro-
pogenic pollution and mineral dust was found. Furthermore, Satheesh et al. (2006)
found lower α values in the spectral band 380–1025 nm compared to those in the20

380–870 nm over AS. This means that as the wavelength region shifts towards shorter
wavelengths higher α values are computed, a fact that implies a convex-type curve
in the lnAOD vs. lnλ relationship, characteristic of coarse-mode dominance. These
features are far from those observed over BoB during winter season.

The current emphasis is on obtaining a regional-scale characterization of the aerosol25

properties as well as mixing and modification processes; for this reason the same
scheme is applied over the four BoB sub-regions (Fig. 10). Large differences in the
α vs. dα plots are revealed establishing large heterogeneities in aerosol load, optical
properties and modification processes over BoB. The aerosols over West BoB show
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high AOD500 (>0.5), clustering in the fine-mode growth wing (α ∼1.2–1.4, dα ∼−0.4)
presenting large similarities with those found over urban Beijing and Kanpur (Gobbi
et al., 2007). Despite the larger scatter, in general, an increase of AOD with constant
η (∼80%) leads to an increase in α and decrease in Rf indicating larger abundance
of freshly emitted aerosols and pollutants with smaller Rf. The North BoB seems to5

be the most inhomogeneous region as revealed in the α vs. dα plot (e.g. large varia-
tion in dα and η even for the same α value); however η increases with increasing of
AOD and a slight decrease of α. The extension of the North BoB pollution to higher
AODs leads to larger Rf and η (80–90%) as those found over urban AERONET lo-
cations (Gobbi et al., 2007; Basart et al., 2009). The observed pattern over North10

BoB is characteristic of coagulation of the fine-mode aerosols under turbid conditions.
Atmospheric conditions with clear dominance of coarse-mode particles (n=10–30%)
are found to be more frequent over South-Central BoB and absent in the other parts.
Over this region, there is no clear evidence for a standard particle modification process
for increasing AOD. Thus, enhanced turbidity can cause increase in Rf, η and α indi-15

cating air-pollution transport or movement of the data points towards the origin along
a nearly constant Rf (∼0.15 µm) line with continuously decreasing values of η and α
establishing an increase in coarse aerosols (sea-salt production). Over the eastern
region of BoB, the aerosols can be, in general, divided into two groups for a threshold
of AOD500 ∼ 0.4. Cases with lower AODs exhibit larger α values, also having a wide20

range of η and dα. For AOD500 > 0.4α shifts towards lower values, with the vast ma-
jority of the cases having negative a2, while the aerosol field may be composed of fine
(η > 60%) aerosols. This indicates a coagulation aging and/or hydration of aerosols
(increase in Rf), similar to that found over locations influenced by seasonal biomass
burning, e.g., Alta Floresta and Mongu (Gobbi et al., 2007). It should be noted that25

during the ship cruise in the Eastern BoB region the prevailing easterly winds trans-
ported biomass-burning aerosols from extensive forest fires in Southeast Asia (Moorthy
et al., 2010).
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Kaskaoutis and Kambezidis (2006) over Athens and Kalapureddy and Devara (2008)
over NIO and AS noticed that the differences between α obtained at shorter and longer
wavelengths exhibit large range under low turbid conditions (∼AOD500 < 0.3), while
these were reducing gradually with increasing AOD. In contrast, this is not the case
over BoB (Figs. 9 and 10), where increasing AOD leads to more negative dα. This is5

a strong indication of fine-mode aerosol dominance under high AODs, as also observed
over biomass-burning regions (Eck et al., 2001; Kaskaoutis et al., 2007b). Although
being a marine environment the α vs. dα plot over BoB presents larger similarities with
those found over various continental AERONET sites dominated by different aerosol
types (Gobbi et al., 2007; Basart et al., 2009) than those observed over AS during10

pre-monsoon season (Kaskaoutis et al., 2010).
Figure 11 shows the correlations between α440–675 and α675–870 used in Figs. 9

and 10. In all the BoB sub-regions the regressions present large scatter and a pro-
nounced curvature as evidenced by the very small fraction of total points lying on the
x= y line. The rare occurrence of coarse-mode aerosols under turbid conditions is the15

most important reason for this fact (Eck et al., 1999, 2005; Kaskaoutis et al., 2007b),
while their larger fraction in South-Central BoB improves significantly the correlation.
In contrast, the high fine-mode fraction in West, East and parts of North BoB leads to
significantly larger α675–870 values and lower correlations. Despite the overall domi-
nance of fine-mode aerosols, the larger coarse-mode fraction over South-Central BoB20

is mainly attributed to the combined effects of both mixing processes (mainly coagu-
lation and humidification) and local sea-salt production. There are several indications
justifying it: i) the larger wind speed over Southern BoB (Moorthy et al., 2010), ii) the
possible aerosol size growth in a more humid environment (higher RH values), iii) the
absence of significant continental influence as the region is >400 km from mainland,25

iv) the air-mass trajectories are mainly oceanic in nature (Raghavendra Kumar et al.,
2011).

Figure 12 shows the spatial distribution of the water-vapor content (WVC) (a) and
coefficient a2 (b) over BoB during W-ICARB. Large negative values of a2 are observed
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along the East Indian coast and North BoB, while somewhat lower negative values are
observed over East BoB. The clear dominance of fine-mode aerosols is dictated while
the coarse-mode particles (positive a2) are limited over south, southwest and parts
of Central and Northeastern BoB. On the other hand, the areas covered by fine-mode
aerosols were not so extended over AS during pre-monsoon season (Kaskaoutis et al.,5

2010). The WVC presents larger values over parts of South BoB, while in West BoB
considerable low values are found, directly influenced by the dry continental winds. It
was found (not presented) that over the regions that WVC shows highest values, RH
and sea-surface wind speed were also found to be highest.

The correlations between WVC and a2 for various AOD550 (a) and α380–870 (b) in-10

tervals are shown in Fig. 13. The importance of these correlations is to identify the
modification of the fine-to-coarse mode fraction (defined via a2) as a function of WVC
for various levels of AOD500 and α380–870. The correlation shows a general increasing
trend of a2 with WVC despite the large scatter observed for WVC<2.0. This indi-
cates an increase of the coarse-mode fraction under higher humidity levels underlying15

aerosol growth via humidification. The WVC vs. a2 correlation becomes more intense
for increasing AOD500 till ∼0.6 as indicated by the larger slopes (Fig. 13a), meaning
that the aerosol growth is more intense under turbid conditions. An increase in fine-
mode particle radius (lower α) with increasing WVC results in aerosol growth due to
coagulation and hygroscopic swelling of the particles. This is underlined in Fig. 13b20

where for WVC>2.5 cm the α380–870 values are below 1.0 over the vast majority of the
cases. On the other hand, the coarse-mode particles can be coated with pollution or
biomass smoke from the forest fires in Southeast Asia increasing the α380–870 values.

The WVC and RH seem to play an important role in the aerosol particle size, es-
pecially for water-soluble industrial aerosols. From extensive measurements during25

TARFOX it was established that the variation of RH was highly correlated with aerosol
effective radius (Ferrare et al., 2000). Hygroscopic growth at high RH tends to increase
AOD, since accumulation-mode particles increase in size at higher RH favored by the
presence of specific components, such as sulfate from coal combustion. It is also well
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known that the higher growth factor includes the hygroscopic and water-soluble par-
ticles (e.g Day and Malm, 2001). In-situ measurements from both aircraft and ships
of pollution aerosols over the coasts of Korea and Japan during ACE-Asia show that
the urban/anthropogenic aerosols were moderately-to-strongly hygroscopic (Carrico
et al., 2003). It was found that similar features, i.e. water-soluble aerosols (see also5

next section), dominate over Indian oceanic regions (Kumar et al., 2008, 2010; Reddy
et al., 2008), so that Fig. 13 indicates aerosol growth via humidification and coagu-
lation. The gas-to-particle conversion of the exhausts in industrial and urban areas
dominates the coastal regions of BoB; the winds carry the precursor gases with them
that get nucleated along the wind trajectory into small particles. On the other hand,10

seasonal changes in the aerosol size and its influence on AOD were seen over urban
Indian sites. Coarse-mode aerosols and/or growth of fine-mode water-soluble aerosols
due to higher ambient RH resulted in higher AODs during summer, while during winter
the AODs are found to be lower mostly dominated by fine-mode aerosols (Ramachan-
dran, 2007). Thus, the detailed aerosol monitoring over BoB from a combination of15

ship-borne, air-borne and satellite measurements on annual basis can improve our
knowledge about aerosol properties, modification processes and climate implications.

4.4 OPAC simulations

In the earlier analysis some basic aerosol types were discriminated over the BoB sub-
regions based on the well-known technique of correlating AOD and α, and also using20

the curvature a2 for more creditable results. However, a specific aerosol type is rather
difficult to exist in the atmosphere due to strong mixing processes; thus, the mixing
of different types is the common scenario. In order to obtain an appropriate aerosol
mixture able to represent the prevailing atmospheric conditions over BoB, standard
aerosol models outlined in Optical Properties of Aerosols and Clouds (OPAC) (Hess25

et al., 1998) have been used. The OPAC model provides the optical properties of vari-
ous aerosol types and new mixtures can be defined from the given aerosol components
to best fit the observed aerosol parameters (Ramachandran and Kedia, 2010; Pathak
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et al., 2010). The number density of each component is adjusted while maintaining
the measured parameters intact with the observations (e.g., Satheesh et al., 2010).
Various aerosol models were varied iteratively until satisfactory agreement (∼5%) was
achieved between modeled and measured spectral AODs. This technique was applied
in the distinct BoB sub-regions, while the south-central region has been divided into5

two. The measured and modeled spectral AODs over the five BoB sub-regions are
shown in Fig. 14. OPAC was used for 70% RH, which is the closest value in all re-
gions, while mean regional spectral AODs have been used in the calculations. The
measured and simulated α values are also given, while all regions show a consistency
between measured and simulated AODs. Based on this consistency an aerosol model10

has been developed for each BoB sub-region capable of reproducing the measured
spectral AOD. The optical properties of each aerosol model over the five BoB sub-
regions are given in Table 2. The extinction (σext) and scattering (σsca) coefficients are
larger over West and North BoB, while larger values of absorption coefficient (σabs)
are observed over East BoB. South and Central BoB are found to be more transparent15

regions with the lowest AOD, σext, σsca and σabs, also having the largest SSA and g val-
ues indicative of aerosols of scattering nature. In contrast, West, North and especially
the eastern part of BoB are found to be dominated by aerosols having a significant
absorbing capability (SSA<0.88).

These aerosol properties correspond to a mixture composed of various standard20

aerosol models included in OPAC; 5 standard aerosol models have been used (soot,
water soluble, sea-salt accumulation mode, sea-salt coarse mode, and mineral trans-
ported). The % contribution (volume mixing ratio×100) of each aerosol model is shown
in Table 3 for each BoB sub-region. The water-soluble aerosol component originates
from gas-to-particle conversion and mainly consists of various kinds of sulfates, ni-25

trates and organic particles; this type dominates in the BoB sub-regions with fractions
between 35% and 70%. However, over the southern part of BoB the sea-salt accumu-
lation mode dominates, since this region is far from continents and the water-soluble
aerosols are mainly of anthropogenic origin. The soot contribution varies from ∼1.2%
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(South BoB) to ∼8 % (East BoB), with the latter being a very large value for marine en-
vironments. Since the soot contribution was found to be ∼5–12% over continental India
(e.g., Ramachandran and Rajesh, 2007; Pathak et al., 2010; Satheesh et al., 2010) its
large fractions over West, North and East BoB highlight the strong anthropogenic influ-
ence and the outflow of pollutants over the marine environment during winter. It may5

also be noted that BC concentrations are larger during winter season throughout the
Indian sub-continent (Badarinath et al., 2009b). An interesting feature that is revealed
from Table 3 is the nearly absence of mineral-transported aerosols corresponding to
dust particles. However, the presence of dust is much lower over BoB than that over
AS (Dey and di Girolamo, 2010) being nearly absent during winter, when the dust ex-10

posure over South Asia is at its minimum (Prospero et al., 2002). In contrast, during
pre-monsoon (ICARB-06) period, elevated aerosol layers were also formed from dust
and detected over BoB (Nair et al., 2009; Satheesh et al., 2009). The coarse-mode
sea-salt aerosol is found to be present over the southern part of BoB (20%) due to the
stronger winds. These results are in close agreement with those shown in Fig. 10.15

The aerosol radiative forcing over the entire BoB and its sub-regions depends
strongly on the aerosol characteristics (Table 1), while the accuracy of the retrievals
depends on the input aerosol properties in the model calculations. The most important
aerosol properties with respect to radiative effects are AOD, scattering and absorbing
coefficients, single scattering albedo (SSA), asymmetry factor (g) and their spectral20

variations. Figure 15 presents the spectral variation of σsca (a), σabs (b), SSA (c) and
g (d) for each BoB sub-region. The spectral variation of σsca shows similar values
for all regions at longer wavelengths, while as the wavelength decreases σsca shows
higher values over the northern and western parts of BoB due to combined effects
of larger AOD and α, which enhances scatter at the shorter wavelengths (Schuster25

et al., 2006). On the other hand, the larger presence of coarse-mode aerosols over
the southern region of BoB is responsible for the larger AODs for wavelengths above
∼900 nm. Opposite to σsca, the spectral variation of σabs clearly differentiates the ab-
sorbing capability of the aerosols over the distinct areas. Thus, in the eastern and

7875

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 7851–7907, 2011

Large anthropogenic
aerosol loading over

BoB

D. G. Kaskaoutis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

western parts of BoB, the aerosols are found to be absorbing, while in the southern
and central regions low absorbing nature is seen. Large and low σabs values were also
found over North-Western and Southern BoB, respectively during ICARB-06 (Moorthy
et al., 2009), while the strong absorbing aerosols over the Eastern BoB region is ob-
served for the first time. Similarly to σabs, the SSA spectral variation shows presence5

of absorbing and non-absorbing areas in BoB; the eastern part is the most absorbing,
which is directly influenced by biomass-burning aerosols from South-East Asia. Note
also the decreasing SSA values with wavelength over western, northern and east-
ern parts of BoB indicating aerosols of anthropogenic and/or biomass-burning origin,
while the larger SSA values over the central and southern regions of BoB present10

neutral wavelength dependence, characteristic of aerosols of marine origin (Dubovik
et al., 2002). Similar to SSA, the spectral variation of g also shows classification of the
aerosols into fine and coarse modes, indicating more isotropic scattering (lower g val-
ues, decrease with wavelength) for the fine-mode aerosols and preference of forward
scattering (larger g values, increase at longer wavelengths) for coarse-mode aerosols15

(Dubovik et al., 2002) over the central and southern regions of BoB.
The wavelength dependence of the absorption coefficient, obtained via OPAC, is fur-

ther examined over the BoB sub-regions with a view of determining the role of BC in
light absorption. Absorbing aerosols produced by different sources, i.e. biomass burn-
ing or urban emissions can be distinguished by different wavelength dependence in20

light absorption with the former having much stronger wavelength dependence (Kirch-
stetter et al., 2004 and references therein). Figure 16 shows the wavelength depen-
dence of the absorption coefficient for estimated BC and that for pure BC rendering the
absorption wavelength exponent ä= 1. The dependence of the aerosol absorption on
wavelength was parameterized using a power-law relationship: σabs =Kλ−ä, where K25

is a constant and ä the absorption Angstrom exponent. Initially, we made a scatter plot
using the estimated absorption coefficient from OPAC and found the value of intercept
K , which is sensitive to the magnitude of the aerosol absorption in different regions.
We have computed the BC absorption coefficient (babs) by assuming that ä=1 for pure
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BC contribution. Thus, the divergence from a λ−1 spectral dependency indicates the
presence of aerosol species other than BC that absorb in the UV and visible spectral
regions (Kirchstetter et al., 2004).

The aerosol light absorption is found to be larger in the western, eastern and north-
ern parts of BoB, while it was found to be significantly reduced in the central and5

southern parts. The larger ä in the eastern parts of BoB is found to be due to en-
hanced light absorption for λ <∼0.6 µm. In this region, note also the slightly higher
curve of estimated BC for λ <0.4 µm suggesting a stronger wavelength dependence
compared to that of pure BC. This probably indicates a contribution of organic carbon
(OC) aerosols from the frequent forest fires in Southeast Asia having stronger light10

absorption wavelength dependence than that for pure BC, as also observed in South
Africa during SAFARI campaign (Kirchstetter et al., 2004); the absorption efficiency of
BC is larger but with weaker wavelength dependence. Thus, ä values lower than 1
indicate nearly absence of acetone soluble OC over BoB, especially in the central and
southern parts. In Western BoB the soot component was found to be large (∼7%); the15

ä value is 0.98 indicating nearly exclusive BC contribution to light absorption. East-
ern coastal India is highly urbanized and industrialized and controls the aerosol field in
coastal BoB (e.g., Satheesh et al., 2009), while the coal-combustion emissions domi-
nate during winter (Venkataraman et al., 2005; Prasad et al., 2006). The aerosols of
such emissions were found to have strong absorption wavelength dependence (Bond,20

2001; Bond et al., 1999). Similar wavelength dependence (ä∼ 1) was found for soot
and urban aerosols (Rosen et al., 1978; Bergstrom et al., 2002; Horvath et al., 1997).
The lower ä values in the northern parts of BoB compared to the western and eastern
parts may be attributed to hazy atmospheric conditions often occurred in IGP during
winter season (e.g., Singh et al., 2004) affecting northern head of BoB under favor-25

able wind conditions. Similarly, the ä values were larger (average of 1.9) in savanna
biomass-burning samples during SAFARI 2000 than those (average of 1.2) found with
the presence of hazy samples aloft (Kirchstetter et al., 2004). In contrast, for oceanic
regions, far away from the coast (Central and South BoB) the absorption of light is
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found to be lower, also exhibiting weak wavelength dependence. This indicates that
the BC contribution to absorption is much lesser, while other species having lower ab-
sorption efficiency play a dominant role. The ä values in these areas are comparable
to those found (0.8–0.9) for motor-vehicle samples (urban aerosols) in Berkeley, USA
(Kirchstetter et al., 2004).5

5 Conclusions

This study focused on the classification of aerosols over the entire BoB during W-
ICARB cruise campaign (27 December 2008 to 30 January 2009) using ship-borne
measurements of spectral AOD. Characterization of the physical and optical aerosol
properties as well as their spatial heterogeneities is of great importance in classifying10

the main aerosol types. The results showed a large spatio-temporal variation of the ex-
amined aerosol properties (e.g. AOD500, α380–870, and a2) over BoB strongly affected
by the continents, the outflow of pollutants, the meteorological parameters (wind speed
and direction, RH) and the mixing processes (e.g. coagulation, humidification) in the
marine atmosphere. The highest AOD500 (>0.7) was observed in Western and North-15

ern BoB with lower values in the southern and parts of Central BoB. The eastern part
of BoB, which was investigated for the first time, presented concurrently high values
of both AOD500 (0.39±0.07) and α380–870 (1.27±0.09). Large α380–870 values were
also observed in the western and northern parts of BoB closely associated with high
AODs indicating an extremely large fraction of anthropogenic aerosols and/or biomass20

burning during winter season. This was also justified by the curvature (a2 values) be-
ing negative in the vast majority of the cases highlighting large fraction of fine-mode
aerosols to the size distribution. A larger fraction of coarse-mode particles (positive a2
values) was found over the central-south parts of BoB far away from the coast. Over
these regions both wind speed and WVC have larger values, which may play an im-25

portant role in aerosol growth via humidification or sea-salt production. A pronounced
south-to-north gradient of increasing values of AOD500 and decreasing values of a2 was
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found, which can be fitted satisfactorily by exponential functions; however, α380–870 did
not show a latitudinal variation. This finding establishes that the more turbid atmo-
spheres are composed of fine-mode aerosols over BoB during winter, a result that was
not so pronounced during pre-monsoon season when a larger fraction of coarse-mode
aerosols (elevated dust) was evident.5

The classification of the aerosols was achieved by means of the widely used method
that relates parameters corresponding to aerosol load (AOD500) and particle size
(α380–870). This correlation showed that the main aerosol type over BoB corresponded
to the (AOD500, α380–870) pair of (∼0.4, 1.2), which is similar to that found over urban
Hyderabad site during winter season. The classification scheme showed an extremely10

large fraction of fine-mode aerosols in turbid atmospheres, which is even larger than
90% in the western parts of BoB and approaches 100% over Eastern BoB. This was
the most exciting finding in the present work, which differentiates the aerosol charac-
teristics over BoB during winter and pre-monsoon seasons. The clean maritime condi-
tions were nearly absent, while quite interesting was the low fraction of mixed aerosols,15

which was dominant over BoB and AS during pre-monsoon season. Larger values of
WVC led to less negative or even positive a2 values indicating a larger coarse-mode
fraction in size distribution, while their correlation becomes more intense as AOD500 in-
creases up to ∼0.6–0.7. Thus, increasing WVC resulted in larger coarse-mode fraction
under higher AODs, an indication of particle growth via humidification.20

Given the high spatial and temporal variability of atmospheric aerosols over BoB,
unique aerosol types are difficult to occur; in contrast, aerosols with internal and ex-
ternal mixtures of various components (natural and anthropogenic) were presented.
Such mixtures, along with complex aerosol properties, have been simulated via OPAC
model, revealing a significant (6–8%) soot component in North-Western and Eastern25

BoB, while the coarse-mode sea-salt aerosols were limited over the southern parts
of BoB. The aerosols over North-Western and Eastern BoB were of absorbing nature
having large absorption coefficient and low SSA values; for these samples the BC was
found to be the dominant light-absorbing aerosol component. These results introduce
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significant heating of the lower atmosphere able to influence the local monsoon sys-
tem. In the following years we might expect aerosol concentrations to increase in
respect to the rapid economic development that is taking place in India. Therefore,
it needs continuous and systematic efforts to monitor the aerosol field and properties
over this region since the knowledge of their effects on the marine environment and in5

our changing planet is a real challenge.

Acknowledgements. The authors are thankful to Director, NRSC and Dy. Director (RS&GIS-
AA) for necessary help at various stages and ISRO-GBP via W-ICARB project for funding
support. We also thank the Department of Ocean Development for giving the opportunity to
conduct measurements on board Sagar Kanya.10

References

Badarinath, K. V. S., Kharol, S. K., Sharma, A. R., and Roy, P. S.: Fog over Indo-Gangetic
Plains – a study using multi-satellite data and ground observations, IEEE J. Sel. Top. Appl.,
2, 185–195, 2009a.

Badarinath, K. V. S., Kharol, S. K., Reddy, R. R., Rama Gopal, K., Narasimhulu, K., Siva15

Sankara Reddy, L., and Raghavendra Kumar, K.: Black carbon aerosol mass concentra-
tion variation in urban and rural environments of India – a case study, Atmos. Sci. Lett., 10,
29–33, 2009b.
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Table 1. Mean and standard deviations of AOD500, α380–870 and coefficient a2 values over the
four BoB sub-regions corresponding to different aerosol types.

Type BoB region AOD500 α380–870 a2

AP

West 0.467±0.117 1.217±0.107 −0.567±0.129
North 0.536±0.346 1.217±0.09 −0.480±0.281
South-central 0.292±0.084 1.115±0.093 −0.244±0.226
East 0.389±0.07 1.282±0.088 −0.331±0.172

BM

West – – –
North 0.146±0.004 1.238±0.053 0.031±0.277
South-central 0.125±0.01 0.972±0.142 0.157±0.059
East – – –

HCM

West 0.526 0.697 −0.387
North – – –
South-central 0.410±0.09 0.474±0.153 0.145±0.221
East – – –

MU

West 0.614±0.051 0.932±0.052 −0.544±0.248
North 0.187±0.07 1.313±0.147 −0.506±0.177
South-central 0.278±0.10 0.922±0.142 −0.089±0.224
East 0.419±0.169 1.023±0.253 −0.164±0.289
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Table 2. Aerosol optical parameters in the 5 BoB sub-regions through OPAC model.

BoB σext σsca σabs SSA g AOD α350–500 α500–800
subregion (550 nm) (550 nm) (550 nm) (550 nm) (550 nm) (500 nm)

West 0.413 0.356 0.056 0.863 0.685 0.424 1.12 1.37
North 0.385 0.340 0.045 0.883 0.688 0.396 1.11 1.35
Central 0.276 0.258 0.018 0.934 0.706 0.285 0.97 1.11
East 0.360 0.302 0.058 0.840 0.683 0.372 1.12 1.35
South 0.289 0.275 0.014 0.950 0.721 0.293 0.85 0.92
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Table 3. Percentage % contribution of each aerosol component in the 5 BoB sub-regions
according to OPAC model. The mean and standard deviations are also given (waso: water
soluble, ssam: sea-salt accumulation mode, sscm: sea-salt coarse mode, mitr: mineral trans-
ported).

West North Central East South Mean Stdev

soot 6.77 5.51 2.23 8.06 1.27 4.77 2.92
waso 71.32 70.46 51.14 67.14 35.44 59.10 15.54
ssam 20.89 23.90 45.54 23.84 43.33 31.51 11.89
sscm 0.23 0.07 1.06 0.89 19.95 4.44 8.69
mitr 0.78 0.06 0.04 0.07 0.01 0.19 0.33
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Fig. 1. The cruise track of Sagar Kanya 254 during W-ICARB, 27 December 2008–30 January
2009. The arrow shows the ship’s direction of movement, while the circles the positions of the
ship at 10:30 LST for each day defined in red next to the circles. The entire BoB is divided
in 5 sub-regions, namely (a) west, along the Indian coast, (b) north, (c) east, (d) central, and
(e) south.
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Fig. 2. Temporal variation of AOD550 (a) and α380–870 (b) values over different BoB sub-regions
during W-ICARB cruise campaign. The mean values along with the standard deviations are
given for each sub-region.
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Fig. 3. Temporal variation of the coefficient a2 (a) and its error (b) values over different BoB
sub-regions during W-ICARB cruise campaign. The mean a2 values along with the standard
deviations are given for each sub-region.

7894

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/7851/2011/acpd-11-7851-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 7851–7907, 2011

Large anthropogenic
aerosol loading over

BoB

D. G. Kaskaoutis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 45

 1 
 2 
 3 
 4 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
a 2 - 

a 1

α (380-870)

 west
 north
 south-central
 east

a2-a1=1.01α + 0.05, R2=0.99

a2-a1=0.86α + 0.21, R2=0.92

a2-a1=1.05α - 0.04, R2=0.99

a2-a1=1.03α - 0.01, R2=0.97

 5 
 6 
Figure 4.  7 
 8 
 9 
 10 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

α
38

0-
87

0

AOD500

 west
 north
 south-central
 east

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

AOD500

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ng

st
ro

m
 e

xp
on

en
t

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

 11 
Figure 5.  12 
 13 
 14 

Fig. 4. Correlation between α380–870 and a2−a1 in the 4 BoB sub-regions. The linear relations
for each region are shown in separate color.
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Fig. 5. Correlation between AOD500 and α380–870 in the different BoB sub-regions (left) and
density plot of AOD500 vs. α380–870 correlation over entire BoB (right).
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Figure 6.  6 
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Fig. 6. Fraction pies of each aerosol type over the four BoB sub-regions during W-ICARB:
AP (Anthropogenic Pollution, biomass burning included), BM (Background Maritime), HCM
(Coarse-Mode for High turbid conditions), MU (Mixed-Undetermined).
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Fig. 7. Contribution (%) of the four aerosol types according to the latitude over BoB during
W-ICARB.
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Figure 8.  7 
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Fig. 8. Correlations between curvature (coefficient a2) and AOD500 and α380–870 for the four
BoB sub-regions (a, b) and for the four aerosol types (c, d), respectively.
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Figure 9.  7 
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Fig. 9. Ångström exponent difference, dα=α(440–675)−α(675–870), as a function of α440–870
and AOD500 (color scale) over entire BoB. The black lines indicate the Reff of fine-mode
aerosols, while the cyan lines correspond to fine-mode fraction (η).
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Figure 10.  7 
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Fig. 10. Same as in Fig. 9, but for the four BoB sub-regions.
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Fig. 11. Correlation between α440–675 with α675–870 over the four BoB sub-regions. The linear
regressions are provided with the respective color.
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Fig. 12. Spatial distribution of WVC (a) and coefficient a2 (b) over BoB during W-ICARB.
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Fig. 13. Correlation between WVC and coefficient a2 for various AOD500 (a) and α380–870 (b)
intervals.
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Figure 14.  2 
 3 
 4 

Fig. 14. Measured and OPAC-simulated (at 70% RH) spectral AOD over 5 BoB sub-regions.
The vertical bars express one standard deviation from the regional mean AOD value.
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Figure 15.  3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 

Fig. 15. Spectral variation of the scattering coefficient (a), absorption coefficient (b), single
scattering albedo (c) and asymmetry factor (d) over the 5 BoB sub-regions obtained via OPAC
simulations.
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Fig. 16. Wavelength dependence of the absorption coefficient for estimated BC (OPAC) and
that for pure BC assuming an absorption wavelength exponent ä=1.
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